Installation and Adjustment Data for the VG-5 Safety Gears
Contents

- Introduction ... 2
- Overspeed Governor 3
- Guide Rail ... 4
- Routine Maintainance 5
- Figure TD-1.7.1 6
- Figure TD-5.2 7
- Figure TD-5.3 8
- Adjustment Guide 9
- Figure TD-SK1 10
- EC Declaration of Conformity 11
Introduction

The VG-5 is a “bi-directional” safety gear - This combines two independent braking elements within a common housing. This produces a more compact and cost effective option than two separate safety gears. Normally a bi-directional unit will be fitted below the lift car but it can be mounted on the crown channels if this is required. However, the crown channels will need to be strengthened as indicated in TD-5.4

The VG-5 has been designed with a braking force in the “up” direction one half that in the “down” direction. This is achieved by having double springs in the down direction and single springs in the up direction. Consequently, VG-5 safety gears are adjusted to have the same “Y” setting in both directions (see figure TD-5.1)

Mounting and Installation

The mounting of the VG-5 is the same as “standard” downward acting safety gears. All VG safety gears are designed to be bolted directly to the car sub-frame or buffer channels using the slotted holes provided. The safety gear must be supported by the car frame as illustrated. If the distance between the support members is greater than 175 mm then a support plate must be provided by the car manufacturer.

The lower surface of the safety gear is used for mounting the bottom car guide shoes using an appropriate adapter plate. It is permitted to machine additional slots or holes in the top/bottom plates within 25 mm of the centreline of the fixing slots.

1. The actuating arms and cranks should be fitted the safety gear as shown in figures TD-5.1 and TD-5.2. The attachment of the actuating arms to the cranks is via slotted holes for later adjustment. The arms can be fitted either side of the brake units depending on the location of the governor.

2. The mounting and adjustment of the safety gear should be carried out with the bottom guide shoes removed. The car balance should first be checked and any compensation weights added to ensure that the Out-of-Balance load (OBL) is within the rating of the guide shoes.

3. The car frame must be correctly positioned relative to the guide rails in both planes and blocked to maintain correct location while the safety gear is being fitted. Each safety gear end unit should be loosely bolted to the buffer channels or sub-frame member using 16 mm diameter bolts.

4. Each end assembly must be set square and central to the guide rails in both planes before tightening the bolts. This can be done by raising both gibs until they are in contact with the guide rail before tightening the bolts. When located correctly, the gap between the top of the gib and the underside of the top plate is less than 12mm. (see figure TD-5.1)

5. With the gibs in contact with their respective guide rail, fit the guide shoes and clamp securely in place. Remove any blocking between sling and guide rail and release the gibs.

6. Fit the connecting rods to both “up” and “down” actuating arms and their respective end assemblies using the M12 clevis rod ends provided. (see figure TD-5.2). The lengths of the rods should be adjusted so that both sets of gibs contact their respective guide rails simultaneously.

IMPORTANT CHECK – check both “up” and “down” braking mechanisms independently.

All gibs MUST contact the guide rail when the actuating arm for the “up” direction is operated. Similarly, all the gibs must contact the guide rail when the “down” actuating arm is operated.

When correctly adjusted, the clevis ends should be locked using the nuts provided.

7. The actuating linkage should now be fitted to the actuating arms and adjusted to ensure that the gib inserts are fully disengaged. (i.e. resting on the safety gear frame) This is done by adjusting the M10 screws between the actuating arms and the cranked arm.

8. Fit the governor connecting kit (e.g. kit SK10) and check that the force needed to engage both “up” and “down” are the same. This should be approximately 100 Newtons to commence movement in both directions.
Overspeed Governor

The safety gear is designed to work with overspeed governors of either the drop-jaw type or friction type. However, drop-jaw types are preferred as these will not release the safety gear if the lift car “bounces” during a safety gear test. The minimum force exerted by the governor must be at least twice that required to engage the safety gear subject to a minimum force of 300 Newtons.

The mechanical tripping speed of the governor must be set in accordance with the current issue of EN81: part 1 or the equivalent National Standard.

Spreadsheet programme TD-4.3.1 can be used to check that the governor and tension weight for friction type governors complies with EN81.

Governor Rope Attachment

All VG safety gears are supplied with a standard operating kit SK1. Depending on the application, the governor rope is connected to the actuating arm either directly or via supplementary kits. The maximum force that the safety gear operating arm is subjected to should not exceed 500 Newtons.

One standard arrangement is illustrated in figures TD-6.2. This shows a rope anchorage bracket (kit SK2) fitted to the crown channels or suspension members. The bracket also incorporates an auxiliary inertia spring for lift travels above 40 metres.

The bracket permits full movement of the operating arm whilst preventing excess loads being applied to the operating linkage. The total travel of the safety gear actuating rod is 44 mm. The first 30 mm is used to raise the gibbs into contact with the guide rail. The gibbs clamp the guide rail during the final 14 mm of travel. The standard bracket can withstand a maximum governor force of 1500 N.

Other operating arrangements are possible and reference should be made to “Application and Sales Data” sheets.

Inertia Spring Setting - Travels above 50 metres

Since 2001, all VG safety gears have been fitted with torsion springs to overcome the governor system inertia. One torsion spring is fitted to each end assembly when being used as a conventional safety gear. Two torsion springs are fitted when the safety gear is inverted and is being used as an “up” brake.

Torsion springs should provide sufficient inertia force for lift travels up to 50 metres with governor rope diameters of 6 or 8 mm. An auxiliary inertia spring using kit SK3 may be required for installations with governor rope diameters above 8 mm and/or lift travels above 50 metres.

Spreadsheet programme TD-4.3.1 can be used to check whether additional inertia springs are required for all popular applications.

When testing counterweight buffers, it is recommended that the safety gear is disconnected as lift car bounce may cause spurious operation of the safety gear.
Guide Rail

Guide Rail Type
The VG range of safety gears have all been type-tested using class one guide rails with a super-brushed finish. These rails may have a lower friction coefficient than standard machined guide rails and VG safety gears are adjusted assuming these rails are to be used.

VG safety gears can be used with rails having a coarser surface finish but they may brake harder than required. If on-site testing indicates that the braking force needs to be adjusted, this can be done by a competent person by adjusting the “y” dimension indicated in drawing TD-6.1.

Note:- Sliding guide shoes running on standard finish guide rails may become polished in service. This may lower the braking force over time and it is recommended that the braking force is checked periodically to ensure that there has been no deterioration. Should the brakes require adjusting, this can be done on-site.

Guide Rail Installation
Guide rails should be designed and installed in accordance with EN81 or equivalent National Code. The running surfaces should be free from rust or other contamination which could effect the braking capacity of the lifts. The joints between adjacent sections must be checked to ensure that steps are below 0.25 mm.

Guide Rail Lubricant
VG safety gears have been tested using an ISO grade 68, an 80 grade EP gear oil and a general 15-50 grade engine oil. Cameron Design is confident that different grades of oil can be used if these are not available.

Safety gear switch
When the safety gear is engaged, a device mounted on the car shall initiate the stopping of the motor before or at the moment of safety gear operation. A suitable switch and operating cam can be mounted on either end or side of the safety gear end units as illustrated in figures 5.2.
Routine Maintenance

Routine maintenance

At six monthly intervals, the following checks should be carried out:-

1. The actuating rod should be disconnected and the safety gear operated by hand to check that all moving parts are free and that the safety switch is operating correctly. The pivot points on the gibbs and linkage and the disc springs should be sprayed with a water repellent lubricant if there is any sign of atmospheric corrosion.

2. Check that the gibbs contact both faces of both guide rails when the actuating arm is raised. Adjust linkage rod and guide shoe location in accordance with installation data if the gibbs are not clamping both guide rails correctly.

3. Inspect all pins and gib inserts for signs of corrosion, deformation or fractures and replace defective parts as required.

Periodic Safety Gear Operation

VG safety gears use a toothed carbide gib which cause localised and controlled grooving of the guide rail surface. Extensive development into various types of gib materials has confirmed that these provide the safest and most consistent braking on smooth guide rails independent of the type and degree of rail lubricant.

During safety gear operation, the gibbs produce 8 parallel grooves approx 0.15 mm deep by 0.25 mm wide. These grooves can be smoothed quickly and easily using emery cloth without impairing the integrity of the guide rail. VG safety gears have been tested on a previously used section of guide rail without any loss of braking force.

Extensive type-testing has also confirmed that the wear rate of carbide inserts is much lower than conventional cast iron or steel gibbs. Each set of inserts should be capable of completing a minimum of 10 full-load, full-speed safety gear checks before being replaced. However, the inserts should be inspected after each safety gear operation to confirm that they are in good condition.

During a public demonstration at the Augsburg International Lift Exhibition in 2007, a VG-4 safety gear was drop-tested repeatedly at 2.0m/sec over the same section of guide rail. After 150 tests, the grooves had increased to only 0.4mm deep and there was no loss of braking force. After testing was discontinued, both the guide rail and inserts were still serviceable.
MAXIMUM GOVERNOR FORCE
900 NEWTONS

To suit 6 - 8 mm diameter rope
Wedge clamps to DIN 15315
Accessory kit SK9
(Other sizes available)

LENGTH OF CONNECTING LINK MUST BE ADJUSTED SO THAT THE BRACKET HAS 44 mm OF TRAVEL IN BOTH DIRECTIONS

Accessory kit SK-10
Wedge sockets not drawn

Connecting link by lift manufacture
Refer to data sheet TD-SK10

Connecting rods by lift manufacturer
Studding and nuts with kit SK10

ACCESSORY KITS REQUIRED
2 OFF SWITCH KITS SK7
2 OFF STANDARD OPERATING KITS SK1
1 OFF ROPE SOCKET KIT SK9
1 OFF BI-DIRECTIONAL KIT SK10
2 OFF LINK PLATE CDS10059
2 OFF M12 x 30 Hex Head Screws
2 OFF M12 Nyloc nuts

Stabiliser bracket
Supplied with kit SK10

M12 screw and nyloc nut

Accessory kit SK10 with bi-directional safety gear VG-5

2 OFF SWITCH KITS SK7
2 OFF STANDARD OPERATING KITS SK1
1 OFF ROPE SOCKET KIT SK9
1 OFF BI-DIRECTIONAL KIT SK10
2 OFF LINK PLATE CDS10059
2 OFF M12 x 30 Hex Head Screws
2 OFF M12 Nyloc nuts
NOTE!

The VG-5 is fitted with integral inertia springs as illustrated. These have been designed to provide a 100 Newtons force at the operating linkage. This force is used to overcome governor system inertia. EN-81 requires the governor to generate a minimum force of 300 Newtons. The integral inertia springs are suitable for lift travels up to 40 metres.
Atwell International Limited

TD-5.3 VG-5 Safety Gear With Kit SK10

BRAKE FORCE ADJUSTMENT NUTS ARE FACTORY SET TO THE SPEED AND LOAD DATA IN TD-4.6. THE NUTS SHOULD ONLY BE ALTERED IN ACCORDANCE WITH THE TEST INSTRUCTIONS OUTLINED BELOW.

NOTE: A TURN OF ONE FLAT OF THE NUT = 0.25 mm MOVEMENT

<table>
<thead>
<tr>
<th>RATED (P+Q) SAFETY GEAR</th>
<th>GOVERNOR SPEED</th>
<th>MAXIMUM Slide Distance</th>
<th>MINIMUM Slide Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2545 kg</td>
<td>0.5 m/sec</td>
<td>25 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>2405 kg</td>
<td>1.0 m/sec</td>
<td>100 mm</td>
<td>71 mm</td>
</tr>
<tr>
<td>2270 kg</td>
<td>1.5 m/sec</td>
<td>225 mm</td>
<td>161 mm</td>
</tr>
<tr>
<td>2145 kg</td>
<td>2.0 m/sec</td>
<td>400 mm</td>
<td>286 mm</td>
</tr>
<tr>
<td>2020 kg</td>
<td>2.5 m/sec</td>
<td>623 mm</td>
<td>446 mm</td>
</tr>
<tr>
<td>1900 kg</td>
<td>3.0 m/sec</td>
<td>900 mm</td>
<td>643 mm</td>
</tr>
<tr>
<td>1790 kg</td>
<td>3.5 m/sec</td>
<td>1225 mm</td>
<td>875 mm</td>
</tr>
<tr>
<td>1680 kg</td>
<td>4.0 m/sec</td>
<td>1600 mm</td>
<td>1143 mm</td>
</tr>
</tbody>
</table>

THE SLIDE DISTANCE WITH A FULL LOAD AND WITH THE SAFETY GEAR ENGAGED AT THE GOVERNOR SPEED SHOULD BE BETWEEN THE MAXIMUM AND MINIMUM VALUES GIVEN ABOVE. THESE VALUES REPRESENT DECELERATION RATES OF 0.5g AND 0.7g RESPECTIVELY.

SHOULD THE STOPPING DISTANCE BE OUTSIDE THE RANGE SHOWN, THE SAFETY GEAR CAN BE ADJUSTED BY INCREASING OR DECREASING THE SETTING DIMENSION “Y” SHOWN ABOVE. THE BRAKE ADJUSTING NUTS ON BOTH END ASSEMBLIES SHOULD BE ROTATED EQUALLY TO INCREASE OR DECREASE THE BRAKING FORCE.

THE LIFT SHOULD BE RE-TESTED AFTER EACH ADJUSTMENT UNTIL THE SLIDE DISTANCE FALLS BETWEEN THE TWO VALUES. NOTE! THE GIB INSERTS SHOULD BE INSPECTED AFTER 10 TESTS AND REPLACED IF THERE IS ANY SIGN OF DETERIORATION.
On-site Testing and Adjustment

The safety gear has been adjusted to suit the load and Governor Tripping Speed stipulated on the serial label. CE marked safety gears are type tested under “free fall” conditions to achieve an average deceleration rate of 0.6g.

When tested with the counterweight connected, the deceleration rate will be approximately 15% higher at around 0.73g. Therefore, to compensate for the braking effect of the counterweight, the test mass should be at least 25% higher than the rated capacity of the lift.

It should also be noted that the braking force of safety gears varies with speed. The actual speed variation will depend on the maximum speed of the lift. However, at governor tripping speeds above 2.3 m/sec, the final deceleration may exceed 1g. Furthermore, if tested with a load less than the maximum lift capacity, the average deceleration rate may also exceed 1g.

If the deceleration exceeds 1g, the subsequent fall-back or “bounce” of a counterweight will cause the lift car to be jerked upwards and could cause the safety gear to disengage.

It must be stressed that this will not happen under free-fall conditions that the safety gears have been tested.

This is not a problem provided the governor does not release the safety gear. Any attempt to drive the lift car down again should immediately cause the safety gear to re-engage.

However, friction type governors will disengage if the counterweight bounces and some lift consultants may not accept this. Under these circumstances, the only solution without invalidating the CE marking of the safety gears, is to fit a drop-jaw type governor.
VG safety gears are adjusted to give a deceleration of 0.6g under free fall conditions at the maximum governor tripping speed. The above graphs give the braking distance of the safety gear for different deceleration rates and test speeds.

When the safety gear is tested at a lower speed with the counterweight attached an allowance must be made for the enhanced braking effect due to the different test speed.

To compensate for the effect of the counterweight, the test load must be 125% of the contract load.

Due to the enhanced braking effect of progressive safety gears, the deceleration will increase to around 0.75g when tested at the normal lift speed.

For more accurate information and a worked example, please refer to technical dossier TD-2.8 and its computer programme TD-2.8 (Atwell International)
EC DECLARATION OF CONFORMITY

Manufacturer: S.G Turret Ltd
96 Town Lane
Denton
Manchester
M34 2DD
England

Safety Component Type: VGS

Maximum Governor Tripping Speed
4.00m/sec

Maximum Rated Mass (P+Q) Lubricated or non-lubricated
Down Direction
Up Direction
2405 Kg @ 1m/sec
38480 N @ 1m/sec
2145 Kg @ 2m/sec
34320 N @ 2m/sec
1900 Kg @ 3m/sec
30400 N @ 3m/sec
1680 Kg @ 4m/sec
26880 N @ 4m/sec

Maximum Braking Force

40720 Newtons

EC Directive Covered
95/16/EC The Lifts Directive

Standards Complied with

EC type examination certificate
BSI-LP-74400

Samples of the above safety component have successfully undergone Type Examination and Production checks in accordance with Annexes V and XI of the above mentioned directive.

British Standards Institution
PO Box 6221
Kitemark Court
Davy Avenue
Milton Keynes
MK1 9EP
Whose Notified Body number is 0086

Authorized Representative:
ATWELL INTERNATIONAL LIMITED
Ball Mill Top Business Park
Hallow
Worcestershire
WR2 6PD
England

Atwell QCF/19D Jan 2012